Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2310926, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446005

RESUMO

Biomedical alloys are paramount materials in biomedical applications, particularly in crafting biological artificial replacements. In traditional biomedical alloys, a significant challenge is simultaneously achieving an ultra-low Young's modulus, excellent biocompatibility, and acceptable ductility. A multi-component body-centered cubic (BCC) biomedical high-entropy alloy (Bio-HEA), which is composed of non-toxic elements, is noteworthy for its outstanding biocompatibility and compositional tuning capabilities. Nevertheless, the aforementioned challenges still remain. Here, a method to achieve a single phase with the lowest Young's modulus among the constituent phases by precisely tuning the stability of the BCC phase in the Bio-HEA, is proposed. The subtle tuning of the BCC phase stability also enables the induction of stress-induced martensite transformation with extremely low trigger stress. The transformation-induced plasticity and work hardening capacity are achieved via the stress-induced martensite transformation. Additionally, the hierarchical stress-induced martensite twin structure and crystalline-to-amorphous phase transformation provide robust toughening mechanisms in the Bio-HEA. The cytotoxicity test confirms that this Bio-HEA exhibits excellent biocompatibility without cytotoxicity. In conclusion, this study provides new insights into the development of biomedical alloys with a combination of ultra-low Young's modulus, excellent biocompatibility, and decent ductility.

2.
Front Pharmacol ; 13: 942769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059970

RESUMO

The human ether-á-go-go-related gene (hERG) encodes the pore-forming subunit (Kv11.1), conducting a rapidly delayed rectifier K+ current (I Kr). Reduction of I Kr in pathological cardiac hypertrophy (pCH) contributes to increased susceptibility to arrhythmias. However, practical approaches to prevent I Kr deficiency are lacking. Our study investigated the involvement of ubiquitin ligase Nedd4-2-dependent ubiquitination in I Kr reduction and sought an intervening approach in pCH. Angiotensin II (Ang II) induced a pCH phenotype in guinea pig, accompanied by increased incidences of sudden death and higher susceptibility to arrhythmias. Patch-clamp recordings revealed a significant I Kr reduction in pCH cardiomyocytes. Kv11.1 protein expression was decreased whereas its mRNA level did not change. In addition, Nedd4-2 protein expression was increased in pCH, accompanied by an enhanced Nedd4-2 and Kv11.1 binding detected by immunoprecipitation analysis. Cardiac-specific overexpression of inactive form of Nedd4-2 shortened the prolonged QT interval, reversed I Kr reduction, and decreased susceptibility to arrhythmias. A synthesized peptide containing the PY motif in Kv11.1 C-terminus binding to Nedd4-2 and a cell-penetrating sequence antagonized Nedd4-2-dependent degradation of the channel and increased the surface abundance and function of hERG channel in HEK cells. In addition, in vivo administration of the PY peptide shortened QT interval and action potential duration, and enhanced I Kr in pCH. We conclude that Nedd4-2-dependent ubiquitination is critically involved in I Kr deficiency in pCH. Pharmacological suppression of Nedd4-2 represents a novel approach for antiarrhythmic therapy in pCH.

3.
Heart Rhythm ; 18(12): 2197-2209, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34536591

RESUMO

BACKGROUND: Slow delayed rectifier potassium current (IKs) is an important component of repolarization reserve during sympathetic nerve excitement. However, little is known about age-related functional changes of IKs and its involvement in age-dependent arrhythmogenesis. OBJECTIVE: The purpose of this study was to investigate age-related alteration of the IKs response to ß-adrenergic receptor (ßAR) activation. METHODS: Dunkin-Hartley guinea pigs were used. Whole-cell patch-clamp recording was used to record K+ currents. Optical mapping of membrane potential was performed in ex vivo heart. RESULTS: There was no difference in IKs density in ventricular cardiomyocytes between young and old guinea pigs. However, in contrast to IKs potentiation in young hearts, isoproterenol (ISO) evoked an acute inhibition on IKs in a concentration-dependent manner in old guinea pig hearts. The ß2AR antagonist, but not ß1AR antagonist, reversed the inhibitory response. Preincubation of cardiomyocytes with the inhibitory G protein (Gi) inhibitor pertussis toxin (PTX) also reversed the inhibitory response. In HEK293 cells cotransfected with cloned IKs channel and ß2AR, ISO enhanced the current but reduced it when cells were cotransfected with Gi2, and PTX restored the ISO-induced excitatory response. Moreover, in aging cardiomyocytes, Gßγ inhibitor gallein, PLC inhibitor U73122, or protein kinase C inhibitor Bis-1 prevented the reduction of IKs by ISO. Furthermore, cardiac-specific Gi2 overexpression in young guinea pigs predisposed the heart to ventricular tachyarrhythmias. PTX pretreatment protected the hearts from ventricular arrhythmias. CONCLUSION: ßAR activation acutely induces an inhibitory IKs response in aging guinea pig hearts through ß2AR-Gi signaling, which contributes to increased susceptibility to arrhythmogenesis in aging hearts.


Assuntos
Arritmias Cardíacas/metabolismo , Senescência Celular/fisiologia , Canais de Potássio de Retificação Tardia/metabolismo , Potenciais da Membrana , Miócitos Cardíacos , Antagonistas de Receptores Adrenérgicos beta 2/farmacologia , Animais , Antiarrítmicos/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/antagonistas & inibidores , Cobaias , Células HEK293 , Humanos , Isoproterenol/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp/métodos , Toxina Pertussis/farmacologia
4.
J Mol Cell Cardiol ; 116: 165-174, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29452158

RESUMO

The slowly activating delayed rectifier K+ current (IKs) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates IKs through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of IKs by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record IKs in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited IKs in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human IKs in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCß) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on IKs and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism underlying the modulation of the KCNQ1/KCNE1 channel.


Assuntos
Angiotensina II/farmacologia , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína Quinase C-épsilon/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Cobaias , Células HEK293 , Ventrículos do Coração/metabolismo , Humanos , Isoenzimas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fosforilação/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...